Feature Reduction for Support Vector Machines

نویسندگان

  • Shouxian Cheng
  • Frank Y. Shih
چکیده

The Support Vector Machine (SVM) (Cortes and Vapnik,1995; Vapnik, 1995; Burges, 1998) is intended to generate an optimal separating hyperplane by minimizing the generalization error without the assumption of class probabilities such as Bayesian classifier. The decision hyperplane of SVM is determined by the most informative data instances, called Support Vectors (SVs). In practice, these SVMs are a subset of the entire training data. By now, SVMs have been successfully applied in many applications, such as face detection, handwritten digit recognition, text classification, and data mining. Osuna et al. (1997) applied SVMs for face detection. Heisele et al. (2004) achieved high face detection rate by using 2nd degree SVM. They applied hierarchical classification and feature reduction methods to speed up face detection using SVMs. Feature extraction and reduction are two primary issues in feature selection that is essential in pattern classification. Whether it is for storage, searching, or classification, the way the data are represented can significantly influence performances. Feature extraction is a process of extracting more effective representation of objects from raw data to achieve high classification rates. For image data, many kinds of features have been used, such as raw pixel values, Principle Component Analysis (PCA), Independent Component Analysis (ICA), wavelet features, Gabor features, and gradient values. Feature reduction is a process of selecting a subset of features with preservation or improvement of classification rates. In general, it intends to speed up the classification process by keeping the most important class-relevant features. BACKGROUND

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

Discriminant Subspace Learning Based on Support Vectors Machines

A new method for dimensionality reduction and feature extraction based on Support Vector Machines and minimization of the within-class data dispersion is proposed. An iterative procedure is proposed that successively applies Support Vector Machines on perpendicular subspaces using the deflation transformation in such a way that the within-class variance is minimized. The proposed approach is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009